Rust and Unicode

Behnam Esfahbod

Lightning Talk — Internationalization & Unicode Conference 41 — October 17, 2017

Firefox is using encoding rs since 56.0 release, it means you are now using Rust in Firefox.

Rust is a systems programming language that has many benifits, one is how Unicode-friend it is.
Natively, Rust supports codepoint-based numeric "char’ type that represents Unicode Scalar Values.
Strings are represented natively in UTF-8 ("str’), which can be viewed as a sequence of bytes or chars, as needed.
There are many Unicode-related cargo packages already available on crates.io, the Rust package host.
UNIC (Unicode and Internationalization Crates for Rust) has the ambitious goal to be ICU for Rust.

Many UCD character properties are already made available in UNIC, as well as
Unicode Bidirectional Algorithm, Normalization Forms, and IDNA solutions.

UNIC is expanding with new components and looking for new contributors to join the project.

https://github.com/behnam/rust-unic

https://www.mozilla.org/en-US/firefox/new/
https://github.com/hsivonen/encoding_rs
https://www.rust-lang.org/en-US/
https://github.com/behnam/rust-unic/blob/master/docs/Unicode_and_Rust.md
https://doc.rust-lang.org/std/primitive.char.html
https://doc.rust-lang.org/std/primitive.str.html
https://crates.io/keywords/unicode
https://crates.io/keywords/unicode?page=2
https://github.com/behnam/rust-unic
https://docs.rs/unic/
https://github.com/behnam/rust-unic

900 1o

V0000 00000 V000000 9 V00000000 V0000 00 V00000
V0000 009 0000 90 900 99000 90000 V0900 90000 V0000 9000 90 V0000 V0000 V0000900 € V00000000 V0000
VOV0000 (0000000 V00000000000 000 9 V0000900000
900000000 0 00000 000000000 90 V000 V09 V000V00V000 V000 V00000 V0000000 00 000000000 V0000
V00 900 00 000 0000000 V000 V0000 900 V00000 0 00 V00000000 V00000 V0000000 V0000 900000 0 00000
V000 G0 9 V00 VOVV0VD V0VV0 VO VOV 90 © VOV VVV0V 9 VVVVV0VV00 VV00H V009 V00000000000 00
QOO) V00 O 09 VOV000 V000000 © VOO0V V09000 060 V600
(00 GO0 VOO0 VOOV V00 VOVVH V090 © V0000 9 V00000 9 V000000000 V0009 0000. V00000 V0000
G000 9090000000000 900 900 900900000 90000 V9000 V0000 9 V090900 9090900000000 900 90000 V0000
V000090. 0 00 90 V00000 V0000 9 900000000900 V0000 900 V000090 V0 V000 V000 9 V0000000000090
V00000 00000 0 V0000 V00000000 900000000
€0000 00000 00000 900 © V00000 ¥ 0000000 0000000000 0 V00000 V000 90 0000000000000 V0000000
(00 00009 000000000 V0VVVV) VOVV0V ¥ V0G0 V00 V0HVV0 00 00V00 0 000 90 00 V00 000000 0060 000
OO V0000 V000 V00V V0 V0 VO0VV00 V009 000 V00000000000 00000 V000 V000000 000000 G
V0000 VOO0 09 V0000009 VOO0V VOOV VV0V V9 VV0V0 V0V VHVVV 90 G VVVV0 950 VOVV0 V00 VH0000000
0000
G0 0000000 000000000 V0000000000 000000 V000 V0000900 V0000900000 00000000 V0000000000000
V000000000 00000 900000 9090 V00000000000 ¥ 9000 V0009 00 V000 900 9900 V00000000000 V0000 00
V0000000 0000000 V0000000900 000000000000 € 0000 00000 0 000 00000
G0 00000 060 000 V0000000 V0VV0V V0000 90 V0000000 V0000 00000 0000000 © 0000000600 00600
(9O OOV GO0V O VO000 V000 € V00000 V000 V000000 90 V0000 V000000 V000 V060 90 V0000 00000
V00000 V000 V9009 9 V0VVVV00 VVVVV GO0V 9D VVVVVVVV000 00 V0 V0000 VD00V V00V V00000000
V0000 0006000 V0009 V0000 00000000 00 V60000 000 V0000000 0000000000 V060 00600000 96O
DO000 V000000 90 V0 90000 V000 © V000000 V000000 9000000000
(99 0O 900000 V00V0000V © V0V00V V000 90 V0000000 V000000 90 V00000 V00000V 90000 00 V0000
0000600 0000, 90000000 00000 ¢ 00000 000000 V00000000 V00000 00000 ¢ 000000 V066 600600
V000000000 © V000000 V00100 V0000 0001, V0000 V00000000 V00000 V00000000 9 V00000 00 0060 0000
V0000 V0OV VOH00 VOVV0D GVVVV V00D V000900 V000 V009 0 V0 V000 VO0VH V0000 0000 V00060 6000
VOO0V V00000 90 VOVV VOOV V9000 V V0 V9009 V000 V0000 VV000000. VOO0V VOO0V VVVV000000 V006
000 000000 00900 V000090 V009000 90000 9 V0900000 V0000 V000 V0099 90000000000 00000 000,
V00000V V000V 9000 V0V 000 90 V00 000000000000

O

SIS

»
-

df{gl%w’ AP,

&thQJADthséﬂqib

6219

900 1o

VO000 V0000 V000000 € V90000000 V00006 00 V00000
VOV00 V00 V009 900 VOV VV09 VVVD VVVV VOV V00VV VVVV VY VVVVV VOVVH VVVV00D 9 VOVVVV000 V0000
DO00000 0000000 000000000060 000 9 V0000 060000
VOVO00000 O V0000 VVVVVVV00V V0 V00V VPV VVVVVVVVVV0 V0PV VVVVD VOVVV000 VD VOVVVV000 V0000
V00 000 00 V00 V000000 V00D 00000 V0 VVV00 © 90 V000000 © V0000V 60VV0000 V0V00 V00000 0 00000
V000 00 0 V00 V000000 V0000 00 V9V V0 Y 000 V0000 9 V000000000 00000 V000 V0000000000000
QOO0 V00V 90 V00000 V000000 9 V00000 V00000 00 0000
GO@WWGWW WWW@WOWOMWWW WW

Sl e, 2028% ik ()

o dal) Gy, 2028+ | St g6 3,
R ok 2020 | © (gl

bt 181 205 2020+ | @il saliols

oty L8] 205 20284 | $5bne Jlas!
lgie madle 22124 culie ol

lacyl s galis FEFF wdcwl, salis

GO00 V0000 00 V000 V0V0000 V0000 00 V0000 00 V000 000 V0 V0000 V0000 - 0000000

(®)
ISLAMIC REPUBLIC OF IRAN

Institute of Standards and Industrial Research of Iran

ISIRI NUMBER

6219

s

Information technology - Persian information interchange and
display mechanism, using Unicode

15t Edition

()
SIS

‘JI/M 8 3/t Lo T

Qbegl.:‘,‘bb.«‘ 5 J\,i‘.-

6219

— olestal (s 5k
S st sl gl Slestlel Giala paget 5 Julis

Jsl ele

Ol ghaie lagas § gyluliid dawga b galisi
cadilae (gaen)els $lag bl 5l g fuad (gl disly Hlasage S sl 198K gans; gage LB (58 Gings 4 Ol (ghatin GBS 5 o lailil dunigge
Sl fpl e 1580 Sygen fpdge b ladiye 5 o ST Galialll 5 Gaulss (oiingy (sale Slonse 5 38he lslialin ¢ duss HLuwlictylS 51 e (538 GlgisannsS b Ciline legia 5o 3lailical g
el g 5 32 (lalis diliiaie o GLAKT cS)lie 51 Juals 601 (48 5 (038 «Gulyi Il o dangi L g (sle pllime 5 Lgingllae cganys ool glagyluilil
3 o s asine Jlaoyl Jass o (538 SledsanasaS Slidel 5 gdind aalis Glo alsdll cpa (oo Glanylailicl Gush iy L adl @il leilaslas 5 Laald 5 uasadd 5 gale KD (LB 3L GBS Breas (BuiS wls
glas piiia g la (en)ele bl Glsie 40 sl Spgass 3 Tob i OF b basize (ol 0aS Ha Laslgldny 5 alld cidlysa
e g la @le pylailivl Glsie 4 cugeat Cygimya g lasa e olo GBS 53 (e 5 Tobe 51 g S asdine 4agh sl ol balss cale)y b g Dland 5 wiaddle lpiloslon 5 Slivigpe byt € (alan |l Guisiing
cils ooy cagead 0 Kie BAT dniuge Lougli 4 Laga o (ols e 8 5 i <50 5lad ola i) 5o € ouke slie bl 4K sptine GBI ola ealayluilinl i aw 09 Kee
Ol @iniia g (o3 qeale (Slgidrdiy AT 51 sS palh Glaniosls 5 @IS Lyl 4 dagd ad (oo Slagylaslic guedi o € il gy uilival @l Glajls plaal clidel 5 Gl (abe SEET 5 o)lailin] dnyse

DESKTOP ANDROID OTHER RELEASES

Version 56.0, first offered to Release channel users on
° September 28, 2017

Firefox Release

Today's release gives Firefox users a better experience with features like Firefox Screenshots,

Send Tabs, and more control over the browser with an improved (and searchable)

preferences section. It also includes incremental performance improvements that move us

closer to our biggest release of the year, coming in November.

September 28, 2017

We'd like to extend a special thank you to all of the new Mozillians who contributed to this
release of Firefox!

Launched Firefox Screenshots, a feature that lets users take, save, and share
screenshots without leaving the browser

Added support for address form autofill (en-US only)

Updated Preferences

o Added search tool so users can find a specific setting quickly

© Reorganized preferences so users can more easily scan settings

© Rewrote descriptions so users can better understand choices and how they affect
browsing

o Revised data collection choices so they align with updated Privacy Notice and data
collection strategy

Media opened in a background tab will not play until the tab is selected

Improved Send Tabs feature of Sync for iOS and Android, and Send Tabs can be
discovered even by users without a Firefox Account

v ﬁxed Various security fixes

~] ;
(% Changed Replaced character encoding converters with a new Encoding Standard-compliant
implementation written in Rust

README.md

encoding_rs

build | passing license Apache 2 / MIT

encoding_rs an implementation of the (non-JavaScript parts of) the Encoding Standard written in Rust and used in
Gecko (starting with Firefox 56).

Functionality

Due to the Gecko use case, encoding_rs supports decoding to and encoding from UTF-16 in addition to supporting
the usual Rust use case of decoding to and enceding from UTF-8. Additionally, the API has been designed to be FFI-
friendly to accommodate the C++ side of Gecko.

Specifically, encoding_rs does the following:

Decodes a stream of bytes in an Encoding Standard-defined character encoding into valid aligned native-endian
in-RAM UTF-16 (units of ul6 / charl6_t).

Encodes a stream of potentially-invalid aligned native-endian in-RAM UTF-16 (units of u16 [char16_t) intoa
sequence of bytes in an Encoding Standard-defined character encoding as if the lone surrogates had been
replaced with the REPLACEMENT CHARACTER before performing the encode. (Gecko's UTF-16 is potentially
invalid.)

Decodes a stream of bytes in an Encoding Standard-defined character encoding into valid UTF-8.

Encodes a stream of valid UTF-8 into a sequence of bytes in an Encoding Standard-defined character encoding.
(Rust's UTF-8 is guaranteed-valid.)

Does the above in streaming (input and output split across multiple buffers) and non-streaming (whole input in a
single buffer and whole output in a single buffer) variants.

Avoids copying (borrows) when possible in the non-streaming cases when decoding to or encoding from UTF-8.
Resolves textual labels that identify character encodings in protocol text into type-safe objects representing the
those encodings conceptually.

Maps the type-safe encoding objects onto strings suitable for returning from document.characterSet .

Validates UTF-8 (in common instruction set scenarios a bit faster for Web workloads than the standard library;
hopefully will get upstreamed some day) and ASCII.

Licensing

Please see the file named COPYRIGHT.

Encoding
Living Standard — Last Updated 2 October 2017

Participate:
GitHub whatwg/encoding (file an issue, open issues)
IRC: #whatwg on Freenode

Commits:
GitHub whatwg/encoding/commits
Snapshot as of this commit
@encodings

Tests:
web-platform-tests encoding/ (ongoing work)

Translation (non-normative):
BAGE

Abstract

The Encoding Standard defines encodings and their JavaScript AP

Table of Contents

1 Preface
2 Security background
3 Terminology
4 Encedings
4.1 Encoders and decoders
4.2 Names and labels
4.3 Output encodings
5 Indexes
6 Specification hooks
7 API
7.1 Interface TextDecoder
7.2 Interface TextEncoder
8 The encoding
8.1 UTF-8
8.1.1 UTF-8 decoder

File an issue about the selected text

0 Features Business Explore Marketplace Pricing

This organization

Servo

The Servo web browser engine

https://servo.org

[Repositories 129 People 26

Pinned repositories

servo

The Servo Browser Engine

* 103k Y17k

servo

The Servo Browser Engine M ANAATNNAANA,

rust browser servo

% 10,278 %1745 Updated 35 minutes ago

rust-mozjs
Rust bindings to SpiderMonkey

Rust %106 %82 Updated 2 hours ago

webrender
A GPU-based renderer for the web

Rust A 829 ¥131 Updated 2 hours ago

Sign in or Sign up

Type: All ~ Language: All ~

Top languages

Rust @ C @Python @ C++

JavaScript

People

Documentation Install Community Contribute

Rust is a systems programming language
that runs blazingly fast, prevents segfaults,
and guarantees thread safety.

Install Rust 1.21.0

October 12, 2017
See who's using Rust.

Featuring fn main() {
let greetings = ["Hello", "Hola", "Bonjour",
= zero-cost abstractions "Cia ZhicsFE", "gdstan,
"Cze$¢", "01a8", "3npascteyire",
= move semantics "Chao ban", "#&#", "Hallo"];

= guaranteed memory safety for (num, greeting) in greetings.iter().enumerate() {
print!("{} : ", greeting);
= threads without data races match num {
R . => println!("This code is editable and runnabl
= trait-based generics => println!("iEste cédigo es editable y ejecut
. => println!("Ce code est modifiable et exécuta
= pattern matching => println!("Questo codice & modificabile ed e
z = println!("ZDOI—FRB\EL TRITHEET
= type inference = printlni(*o{7lol 4 ==& +8¥stn 4 -
=> println!("Ten kod mozna edytowa¢ oraz uruch
=> println!("Este cédigo é editdvel e executédv
=> println!("3T0T KOA MOXHO OTPERAKTAPOBATL M
=> println!("Ban c6 thé edit va run code truc
= println! ("XBERBRALUGEHBEBRETH
=> println!("Dieser Code kann bearbeitet und a
= {}

= minimal runtime

= efficient C bindings

More examples

Our site in other languages: Deutsch, English, Espaiiol, Francais, Bahasa Indonesia, Italiano, H 455, =20, Polski,
Portugués, Pycckuii, Tiéng viét, Eihsz

CARG o Browse All Crates Docs v

i Cargo, Rust’s Package Manager

Installing
Install Stable Rust and Cargo

The easiest way to get Cargo is to get the current stable release of Rust by using the rustup script:

$ curl -sSf https://static.rust-lang.org/rustup.sh | sh

After this, you can use the rustup command to also install beta or nightly channels for Rust and Cargo.

Install Nightly Cargo
To install just Cargo, the current recommended installation method is through the official nightly builds. Note that Cargo
will also require that Rust is already installed on the system.

Platform 64-bit 32-bit
Linux binaries targz ftargz
MacOS binaries targz targz
Windows binaries targz targz

Build and Install Cargo from Source

Alternatively, you can build Cargo from source.

Let’s get started

To start a new project with Cargo, use cargo new:

$ cargo new hello_world --bin

123 lines (81 sloc) 5.86 KB Raw Blame History [CJ 4

Unicode and Rust

The Unicode Standard, and related specifications, are a complex system with interdependent terms and properties.
Here’s a summary for working with Unicode when programming in Rust.

Basic Unicode Concepts

* Unicode Abstract Characters are abstract units of information used for the organization, control, or
representation of textual data.

* Unicode Code Points are integer values in the Unicode codespace: numbers between @ (zero) and @x1@_FFFF ,
inclusive.

e Unicode Scalar Values are integer values in a subset of Unicode Code Points: the Unicode codespace excluding
high-surrogate and low-surrogate code points: U+D8@@..U+DFFF , inclusive.

¢ Unicode Encoded Characters are Unicode Scalar Values assigned to a Unicode Abstract Characters by the
Unicode Standard. Some Unicode Abstract Characters are represented with a sequence of Unicode Encoded
Characters.

Unicode Scalar Values marked as noncharacters or reserved (a.k.a unassigned) are not considered Unicode Encoded
Characters. Therefore, Unicode Scalar Values can have one of the following assignment statuses:

* assigned character, code points that are marked to be an Encoded Character,
Chatacter*, or
* unassigned or reserved, code points that can become an Encoded Character in the future.

In contrast to Unicode Code Points and Unicode Scalar Values (which are sets of numbers written in stone), the set of
Unicode Encoded Characters (a subset of Scalar Values) expands with every version of Unicode. Figure below shows
the number of Unicode Assigned Characters over time, from 1991 to 2017.

Number of Assigned Unicode Characters over time

Primitive Type char 1.0.0 [-]

[-]A character type.

Primitive Type char

Methods

The char type represents a single character. More specifically, since 'character' isn't a well-defined concept in Unicode, char isa
'Unicode scalar value', which is similar to, but not the same as, a 'Unicode code point'.

Trait Implementations This documentation describes a number of methods and trait implementations on the char type. For technical reasons, there is
additional, separate documentation in the std: :char module as well.

Representation

Primitive Types char is always four bytes in size. This is a different representation than a given character would have as partof a String. For

example:
array

bool let v = vec!['h',

char
// five elements times four bytes for each element
assert_eq! (20, v.len() * std::mem::size_of::<char>());

let s = String::from("hello");

// five elements times one byte per element
assert_eq! (5, s.len() x std::mem::size_of::<u8>());

As always, remember that a human intuition for 'character' may not map to Unicode's definitions. For example, despite looking
similar, the 'é' character is one Unicode code point while 'é' is two Unicode code points:

isize

let mut chars = "é".chars();

// U+00e9: 'latin small letter e with acute'

assert_eq! (Some('\u{00e9}'), chars.next());

slice assert_eq! (None, chars.next());

pointer

reference

str
let mut chars = "é".chars();

// U+0065: 'latin small letter e'

u128 assert_eq! (Some('\u{0065}'), chars.next());
u16 // U+0301: 'combining acute accent'
assert_eq! (Some('\u{0301}'), chars.next());
assert_eq! (None, chars.next());

tuple

u32
ub4

s This means that the contents of the first string above will fitinto a char while the contents of the second string will not. Trying to

create a_char literal with the contents of the second string gives an error:

Primitive Type str 1.0.0 [-]

[-]String slices.

Primitive Type str
The str type, also called a 'string slice), is the most primitive string type. It is usually seen in its borrowed form, &str . Itis also

Methods the type of string literals, &'static str.
Trait Implementations Strings slices are always valid UTF-8.

This documentation describes a number of methods and trait implementations on the str type. For technical reasons, there is

additional, separate documentation in the std: :str module as well.

Primitive Types Examples

String literals are string slices:
array

bool
let hello = "Hello, world!";
char
// with an explicit type annotation
let hello: &'static str = "Hello, world!";

They are 'static because they're stored directly in the final binary, and so will be valid for the 'static duration.
Representation

A &str is made up of two components: a pointer to some bytes, and a length. You can look at these with the as_ptr and len
methods:

isize

. use std::slice;

pointer use std::str;

reference

Slice let story = "Once upon a time...";

ste let ptr = story.as_ptr();

tuple let len = story.len();

u128

// story has nineteen bytes

assert_eq! (19, len);

u1é
u32

u64 // We can re-build a str out of ptr and len. This is all unsafe because
w8 // we are responsible for making sure the two components are valid:
let s = unsafe {

crates.io Browss Al Crates

Rust Package Registry

® All Crates for keyword 'unicode’

Displaying 1-10 of 55 total results

unicode-xid

Determine whether characters have the XID_Start or XID_Continue properties according to Unicode Standard
Annex #31.

Homepage Documentation Repository

unicode-bidi

Implementation of the Unicode Bidirectional Algorithm

Documentation Repository

unicode-normalization GRS
This crate provides functions for normalization of Unicode strings, including Canonical and Compatible
Decomposition and Recomposition, as described in Unicode Standard Annex #15.

Homepage Documentation Repository

unicode-width

Determine displayed width of ‘char” and "str’ types according to Unicode Standard Annex #11 rules.

Homepage Documentation Repository

unicode-segmentation

This crate provides Grapheme Cluster and Word boundaries according to Unicode Standard Annex #29 rules.

Homepage Documentation Repository

Docs Log in with GitHub

Recent Downloads »

All-Time: 1,667,359

All-Time: 1,566,966

3 Recent: 325,470

All-Time: 956,289

Recent: 246,500

3 All-Time: 917,

Recent: 222,961

crates.io Browse Al s

Rust Package Registry

® All Crates for keyword 'unicode’

Displaying 11-20 of 55 total results

harfbuzz-sys

Rust bindings to the HarfBuzz text shaping engine

Documentation Repository

unicode-script

Look up the Unicode Script property

Documentation Repository

strcuraor

Provides a string cursor type for seeking through a string whilst respecting grapheme cluster and code point
boundaries.

Documentation Repository

unicode_categories

Query Unicode categery membership for chars

Documentation Repository

utic-uctl-core

UNIC - Unicode Character Database - Version

Homepage Repository

Docs v Log in with GitHub

ecent Downloads v

3 All-Time: 46,434

Rece ,908

All-Time: 40,050

Recent: 2,128

All-Time: 4

Rece!

All-Time: 2,558

Recent: 790

All-Time: 499

Recent: 298

README.md

UNIC: Unicode and Internationalization Crates for Rust

Linux build |passing | Windows build |passing | unicode |10.0.0 | release v0.6.0 docs 0.6.0

https://github.com/behnam/rust-unic

UNIC is a project to develop components for the Rust programming language to provide high-quality and easy-to-
use crates for Unicode and Internationalization data and algorithms. In other words, it's like ICU for Rust, written
completely in Rust, mostly in safe mode, but also benifiting from performance gains of unsafe mode when possible.

Project Goal

The goal for UNIC is to provide access to all levels of Unicode and Internationalization functionalities, starting from
Unicode character properties, to Unicode algorithms for processing text, and more advanced (locale-based)
processes based on Unicode Common Locale Data Repository (CLDR).

Other standards and best practices, like IETF RFCs, are also implemented, as needed by Unicode/CLDR components,
or common demand.

Project Status

At the moment, in mid-2017, UNIC is under heavy development: the API is updated frequently on master branch, and

Components and their Organization

UNIC Components have a hierarchical organization, starting from the unic root, containing the major components.
Each major component, in turn, may host one or more minor components.

API of major components are designed for the end-users of the libraries, and are expected to be extensively
documented and accompanies with code examples.

In contrast to major components, minor components act as providers of data and algorithms for the higher-level, and
their API is expected to be more performing, and possibly providing multiple ways of accessing the data.

The UNIC Super-Crate

The unic super-crate is a collection of all UNIC (major) components, providing an easy way of access to all
functionalities, when all or many are needed, instead of importing components one-by-one. This crate ensures all
components imported are compatible in algorithms and consistent data-wise.

Main code examples and cross-component integration tests are implemented under this crate.

Major Components

e unic::ucd : Unicode Character Database.

e unic::bidi : Unicode Bidirectional Algorithm (UAX#9).

e unic::normal : Unicode Normalization Forms (UAX#15).

unic::idna : Unicode IDNA Compatibility Processing (UTS#46).

Code Organization: Combined Repository

Some of the reasons to have a combined repository these components are:

+ Faster development. Implementing new Unicode/i18n components very often depends on other (lower level)
components, which in turn may need adjustments—expose new API, fix bugs, etc—that can be developed, tested
and reviewed in less cycles and shorter times.

* Implementation Integrity. Multiple dependencies on other components mean that the components need to, to
some level, agree with each other. Many Unicode algorithms, composed from smaller ones, assume that all parts
of the algorithm is using the same version of Unicode data. Violation of this assumption can cause
inconsistencies and hard-to-catch bugs. In a combined repository, it's possible to reach a better integrity during
development, as well as with cross-component (integration) tests.

+ Pay for what you need. Small components (basic crates), which cross-depend only on what they need, allow
users to enly bring in what they consume in their project.

& DOCS.RS & unic-0.6.0 ~ & Source «f Platform - Find crate

Crate unic

Reexports Crate unic
Constants

Flyunic: unico

Crates

[-1[src]

de and Internationalization Crates for Rust

The unic super-crate (this) is a collection of all UNIC components, providing an easy way of access to all functionalities, when

all or many are
algorithms and

Components

e ucd: Unicor

needed, instead of importing components one-by-one, and ensuring all components imported are compatible in
consistent data-wise.

de Character Database.

e bid1: Unicode Bidirectional Algorithm (USA#9).

¢ normal: Unicode Normalization Forms (USA#15).

e +dna: Unicode IDNA Compatibility Processing (UTS#46).

A Basic Exam

unic:
unic:
unic:
unic:

#[cfg_attr
#[test]
fn test_sa

// Age
assert

assert
assert

Age

Un
)5

if let
as
as

ple

:bidi::BidiInfo;

inormal::StrNormalForm;

tucd::{Age, BidiClass, CharAge, CharBidiClass, StrBidiClass, UnicodeVersion, is_cased
tucd::normal: :compose;

(rustfmt, rustfmt_skip)]

mple() {

_eq! (Age::of ('A') .unwrap().actual(), UnicodeVersion { major: 1, minor: 1, micro: 0 }
_eq! (Age::of (' \u{AGEEO}'), None);

_eq!(

::of ("\u{10FFFF}"') .unwrap().actual(),

icodeVersion { major: 2, minor: 0, micro: 0 }

Some(age) = 'M'.age() {
sert_eq! (age.actual().major, 9);
sert_eq! (age.actual().minor, @);

