Introductionto
Unicode &i18nin Rust

- »
({ :

EN

Behnam Esfahbod
Software Engineer

Quora

Abstract

42nd
Internationalization &
Unicode Conference

September 2018

Santa Clara, CA, USA

Q

The Rust Programming Language has native support for Unicode
Characters’ Unicode Scalar Values, to be exact. The language provides fast
and compact string type with low-level control over memory consumption,
while providing a high-level APl and enforcing memory and data safety at
compile time. The Rust Standard Library covers the basic Unicode
functionalities, and third-party libraries - called Crates - are responsible for
the rest. UNIC’s Unicode and Internationalization Crates for Rust is a project
to develop a collection of crates for Unicode and internationalization data
and algorithm, and tools to build them, designed to have reusable modules
and easy-to-use and efficient API.

In this talk we will cover the basics of Rust's API for characters and strings,
and look under the hood of how they are implemented in the compiler and
the standard library. Afterwards, we look at UNIC's design model, how it
implements various features, and lessons learned from building sharable
organic micro components.

The talk is suitable for anyone new to Unicode, or Unicode experts who like
to learn about how things are done in the Rust world.

2

Abstract

42nd
Internationalization &
Unicode Conference

September 2018

Santa Clara, CA, USA

Q

The Rust Programming Language has natiy
Characters’ Unicode Scal alues, to be exact.
and compact string t
while providing a hig
compile time. The

functionalities, and thir
the rest. UNIC’s Unicode
to develop a collection o
and algorithm, and tools t
and easy-to-use and efficien

pport for Unicode
age provides fast
ory consumption,
and data safety at
the basic Unicode
es - are responsible for
rates for Rust is a project
nd internationalization data
ed to have reusable modules

In this talk we will cover
and look under the ho
the standard library.
implements variou
organic micro co

Pl for characters and strings,
ented in the compiler and
's design model, how it
from building sharable

The talk is suitabl
to learn about how

r Unicode experts who like
re done in the Rust world.

Looking for
L10n in Rust?

Happening NOW
on Track 3!

Fluent 1.0 — Next Generation Localization System from Mozilla
by Zibi Braniecki

Localization systems have been largely stagnant over the last 20 years.
The last major innovation - ICU MessageFormat - has been designed
before Unicode 3.0, targeting C++ and Java environments. Several
attempts have been made since then to fit the APl into modern
programming environments with mixed results.

Fluent is a modern localization system designed over last 7 years by
Mozilla. It builds on top of MessageFormat, ICU and CLDR, bringing
integration with modern ICU features, bidirectionality, user friendly file
format and bindings into modern programming environments like
JavaScript, DOM, React, Rust, Python and others. The system comes with
a full localization workflow cycle, command line tools and a CAT tool.

With the release of 1.0 we are ready to offer the new system to the wider
community and propose it for standardization.

4

About me e Software Engineer @ Quora, Inc.

e Co-Chair of Arabic Layout Task Force @ W3C i18n Activity

e Virgule Typeworks

e Facebook,Inc.

e IRNIC Domain Registry

e Sharif FarsiWeb, Inc.

This talk

Quick Intro to Rust

Characters & Strings

It Gets Complicated!

On Top of the Language

Quick Intro to Rust

T COULD RESTRUCTURE
THE PROGRAMS FLOW

OR UJSE ONE LITILE
‘GOt INSTEAD.

g

EH, SCREW GOOD PRACTICE.

HOW BADCAN 1T BE?
\ goto main_sub3;

/!

COMPILE

XKCD | GOTO [CC BY-NC 2.5]

https://www.xkcd.com/292/

History e 2006: The project started out of a personal project of Graydon Hoare
- OCaml compiler

e 2009: Mozillabegan sponsoring

e 2011: Self-hosting compiler, using LLVM as backend

History e 2006: The project started out of a personal project of Graydon Hoare
- OCaml compiler

e 2009: Mozillabegan sponsoring
e 2011: Self-hosting compiler, using LLVM as backend
e Pre-2015: Many design changes
- Drop garbage collection
- Move memory allocation out of the compiler
e 2015: Rust 1.0, the first stable release

e 2018: First major new edition, Rust 2018

10

https://blog.rust-lang.org/2018/07/27/what-is-rust-2018.html

Build System e Cargo

& Tooling - Package manager
- Resolve dependencies

- Compile
- Build package and upload to crates.io

11

Build System e Cargo

& Tooling - Package manager
- Resolve dependencies
- Compile
- Build package and upload to crates.io

e Common tooling
- Rustup
- Rustfmt

- Clippy
- Bindgen

12

e Abstraction without overhead (ZCA)
- & without hidden costs

13

Systems
Language

Abstraction without overhead (ZCA)
- & without hidden costs

Compile to machine code
- & runs on microprocessors (no OS/malloc)

14

Systems
Language

Abstraction without overhead (ZCA)
- & without hidden costs

Compile to machine code
- & runs on microprocessors (no OS/malloc)

Full control of memory usage
- Even where there’s no memory allocation

15

Systems
Language

Abstraction without overhead (ZCA)
- & without hidden costs

Compile to machine code
- & runs on microprocessors (no OS/malloc)

Full control of memory usage
- Even where there’s no memory allocation

Compiles to Web Assembly
- & runs in your favorite browser

16

e Statically typed
- All types are known at compile-time
- Generics for data types and code blocks

17

Typed
Language

Statically typed
- All types are known at compile-time
- Generics for data types and code blocks

Strongly typed

- Harder to write incorrect programs
- No runtime null-pointer failures

18

2+ fn factorial(i: u64) -> u64 {

4~ match i {

5 5 0 =>1,

6 n => n x factorial(n - 1),
7 }

2}

9

10+ fn main() {

11 let x = 10;

12 println!("Factorial({x}) = {f}", x = x, f = factorial(x))
13 // Factorial(10) = 3628800

14 }

15

19

Type System e Algebraic types
- First Systems PL

- Tuples, structs, enums, & unions
- Pattern matching (match) for selection and destructure

e Some basic types

- Option enum type: some value, or None

- Result enum type: Ok value, or Err

20

fn divide(numerator: f64, denominator: f64) -> Option<f64> {

if denominator == 0.0 {
None
} else {

Some (numerator / denominator)

// The return value of the function 1is an option
let result = divide(2.0, 3.0);

// Pattern match to retrieve the value
match result {
// The division was valid
Some(x) => println!("Result: {}", x),
// The division was 1invalid
None => println! ("Cannot divide by 0"),

21

enum Result<T, E> {
ok(T),
Err(E),

22

Type System use std::fs::File;

use std::io::prelude::*;
use std::io;

struct Info {
name: String,
age: 132,
rating: i32,
}

fn write_info(info: &Info) -> jo::Result<()> {
Result (example) let mut file = File::create("my_best_friends.txt")?;
// Early return on error
file.write_all(format! ("name: {}\n", info.name).as_bytes())7?;
file.write_all(format! ("age: {}\n", info.age).as_bytes())7?;
file.write_all(format!("rating: {}\n", info.rating).as_bytes())7?;
0k (())

23

e No garbage collection
- Strict memory management

24

Memory

Management
& Safety

No garbage collection
- Strict memory management

Ownership
- Memory parts are owned by exactly one variable

- Destruct memory when variable goes out of scope

25

Memory

Management
& Safety

No garbage collection
- Strict memory management

Ownership
- Memory parts are owned by exactly one variable

- Destruct memory when variable goes out of scope

Borrow checker

- Data-race free

- Similar to type checker

- Either read-only pointers or one read-write pointer

26

Memory

Management
& Safety

No garbage collection
- Strict memory management

Ownership
- Memory parts are owned by exactly one variable
- Destruct memory when variable goes out of scope

Borrow checker

- Data-race free

- Similar to type checker

- Either read-only pointers or one read-write pointer

Lifetimes
- = Position in the stack that owns the heap allocation

27

Traits
- Define behavior (can’t own data)
- Inheritance

= Deref

28

Interfaces & e Traits
Impl.s - Define behavior (can’t own data)
- Inheritance
- Deref

e Implblocks
- Implement types and traits (can’t own data)
- Composition

29

Interfaces & e Traits
Impl.s - Define behavior (can’t own data)
- Inheritance
- Deref

e Implblocks
- Implement types and traits (can’t own data)
- Composition

e Codeblocks
- Functions, methods and closures

30

Interfaces &
Impl.s

Traits
- Define behavior (can’t own data)
- Inheritance

= Deref

Impl blocks
- Implement types and traits (can’t own data)
- Composition

Code blocks
- Functions, methods and closures

Macros

= assert! (), format! (), print! (), println! ()

31

Characters & Strings

e Signed & unsigned integer types

8-bit i8 u8

16-bit il6 ule
32-bit i32 u32
64-bit 164 u64

arch isize usize

33

e Signed & unsigned integer types

8-bit i8 us
16-bit i16 ulé
32-bit i32 u32
64-bit 164 u64
arch isize usize

¢ Floating-point types
- £32,f64

34

let x = 1 112 064;

https://www.quora.com/How-do-you-determine-how-many-characters-Unicode-can-store/answer/Behnam-Esfahbod-%E3%82%B9%E3%83%91%E3%83%BC%E3%83%95%E3%83%99%E3%83%89-%E3%81%B9%E3%81%AA%E3%82%80

let x = 1 112 064;

https://www.quora.com/How-do-you-determine-how-many-characters-Unicode-can-store/answer/Behnam-Esfahbod-%E3%82%B9%E3%83%91%E3%83%BC%E3%83%95%E3%83%99%E3%83%89-%E3%81%B9%E3%81%AA%E3%82%80

e Asdefined by The Unicode Standard
- “Any Unicode code point, except high-surrogate and low-surrogate
code points.”
- U+0000 to U+D7FF (inclusive)
- U+EO0O to U+10FFFF (inclusive)
- Total of 1,112,064 code points

2 use std::mem::size_of;

4
5+ fn main() {
6 println!("Size of Character type: {}'", size_of::<char>());

// Output: Size of Character type: 4

7
I
9

37

¢ No numerical operations on the char type

- What would the result of "U+D7FF + 1°7?

error[E0369]: binary operation '+' cannot be applied to type ‘char’
-=> src/main.rs:7:13

I

| let x = 'a' + 1;
I AANAAANAA
I

7

note: an implementation of ‘std::ops::Add’ might be missing for ‘char’

38

Compiler knows that all values of the 4 bytes are not used!

#!1[allow(dead_code)]

2

3 use std::mem::size_of;

4

5 struct OptionalChar (Option<char>);

6

7~ impl OptionalChar {

8~ fn new(chr: char) -> Self {

9 OptionalChar(Some(chr))

10 }

11

12~ fn empty() -> Self {

13 OptionalChar(None)

14 }

15 }

16

17+ fn main() {

18 let _chr = 'N';

19 println!("Size of Character type: {0}", size_of::<char>());
20
21 let _opt_chr = OptionalChar::new('\u{1ESE}'); // B LATIN CAPITAL LETTER SHARP S
22 println!("Size of Optional Character type: {0}", size_of::<OptionalChar>());
23 }
24

39

Box<T> Vec<T> Box<Trait>

[otr [coo [ten | [Cotr [ten [data [vtable]
/
I3 [v
(e[[]

where T: Sized H_/
len

Kegend
4/8 bytes (usize)
4/8 bytes

I‘

implies ownership

\
Ycap * into_vec - -
3 Note: Stringhassame """ "°° destructor atomic [4/8 bytes

memory layout as Vec<ug> Y size
&T &[T)
(ot | per | Ten | slie /8 bywe

o methedl
. methed?2 X heap allocation,

[T] AR AR S

len Y
\ . user defined type

Note: 3str has same

: . memory layout as a[u8)
Rc<T> . ., Arc<T> Mutex<T> enum {A, B, C} > deref
ptr ; | inner |poison| T orl tag | A | I
X X \, orl tag_| 8 |
[strong | weak | T | [strong [weak [T [tag | ¢ | |
Consider using parking_lot, which Also basis of Resul t, Cow, etc.
doesn't allocate the raw mutex
Option<T> Option<T>
Cell<T> RefCell<T> orl — | I l o,l L I
I T | |borr0l| T | tag | I I I
when T contains pointers

which can't be null

Rust container cheat sheet, by Raph Levien, Copyright 2017 Google Inc., released under Creative Commons BY, 2017-04-21, version 0.0.3
40

¢ Narrow pointers Box<T>
- Point to sized types (size is known at compile-time) @
- Slngle usize value
where T: Sized
v
&1

where T: Sized

41

e Narrow pointers

- Point to sized types (size is known at compile-time) Box<[T)>
tr len
- Single usize value Letr | |
T
e FatPointers
- Point to something with unknown size (at compile-time) len Y _
- Single usize value, plus more data Jntovec __.-" i
&[ml

Note: 3str has same
memory layout as a[us)

42

. -
Arrays -~7 into_boxed_slice 4
- Sized sequence of elements Vec<T> Box<[T]>
— [T; size] [ptr | cap | len | [ptr [len |

- Unsized sequence of elements

— [T]

ey

N
Yeap v_

Note: String has same .
memory layout as Vec<ug> v

. &[T

[ptr | len |

N EA NN AN
len Y

Note: 3str has same
memory layout as 3[u8)

43

Arrays
- Sized sequence of elements

— [T, size]

- Unsized sequence of elements
— [T]

Slice

- A view into a sequence of elements
- &[T]

- On arrays, vectors, ...

44

- ——— -
- - - -
-

-=""into_boxed_slice &

Vec<T> Box<[T])>
[ptr | cap | len | [ptr | len |
’ -
ENENEN N
 len Y), len Y .
Ycap *.__ intovec _.-" .
Note: Stringhassame ~ ~~°°°° .
memory layout as Vec<ug> Y
’ &M
[ptr | len |

N

T

Note: 3str has same
memory layout as 3[u8)

Arrays
- Sized sequence of elements

— [T, size]
- Unsized sequence of elements
— [T]

Slice
- A view into a sequence of elements
- &[T]

- On arrays, vectors, ...

Vector

- A dynamic-length sequence of
elements

- Sitin the heap

45

- -

-=""into_boxed_slice 4
Vec<T> Box<[T])>
[ptr | cap | len | |_ptr [len |
I3
ENENEN N
 len Y)

Yeap w_ intovec .--

Note: String has same ;
memory layout as Vec<ud>

&[T]
[ptr | len |

N ER

Sy

Note: 3str has same
memory layout as 3[u8)

e str -=" into_boxed_slice
- A special [u8]

- Always a valid UTF-8 sequence

J Y

Yeap v
Note: String has same .
memory layout as Vec<ug> ¥
. &[T
[ptr | len |
."

Note: 3str has same
memory layout as a[u8)

46

str
- A special [u8]
- Always a valid UTF-8 sequence

&str
- A special & [u8]

47

T, Y

N
Yeap *.__ intovec _.-"
Note: Stringhassame ~~~~°°°7

memory layout as Vec<ug> v
. &[T

[ptr | len |

Note: 3str has same
memory layout as a[u8)

str
- A special [u8]
- Always a valid UTF-8 sequence

&str
- A special & [u8]

String
- A dynamic UTF-8 sequence

- Return type of str functions that

cannot guarantee preserving bytes
length

48

-=""into_boxed_slice 4
[ptr | cap | len | |_ptr [len |
I3 -
I T]
len Y) len Y .
Ycap *.._ intovec _.-"
Note: Stringhassame ~~""°° :
memory layout as Vec<ug> Y
. &lm)
[ptr | len |

“

[t][]]
len Y

Note: 3str has same
memory layout as 3[u8)

e Applytoboth s[u8] and sstr

- fn main() {
let s = "Hello";
println!("{}", s.to_ascii_uppercase());
// HELLO

println!("{:?}", t.to_ascii_uppercase());
// [87, 79, 82, 76, 68]

2
3
4
5
6
7
8 let t = "World".as_bytes();
9
10
11 }

12

49

e Applyonlytosstr

~ fn main() {
let s = "PxaBuuna";
println!("{}", s.to_uppercase());
// PXABYHUHA

o~NOOULA WN
e

50

Iterating over characters of a string

2

3+ fn main() {

4 let s = "o!l";

5

6 let char_vec: Vec<char> = s.chars().collect();
7 assert_eq! (5, char_vec.len());

8~ for c 1in char_vec {

9 println!("{}", c);

10 }

11

12 let byte_vec: Vec<u8> = s.bytes().collect();
13 assert_eq! (9, byte_vec.len());

14 ~ for b in byte_vec {

15 println!("{:?}", b);

16 }

17 }

18

1Q

51

Box<T> Vec<T> Box<Trait>

[otr [coo [ten | [Cotr [ten [data [vtable]
/
I3 [v
(e[[]

where T: Sized H_/
len

Kegend
4/8 bytes (usize)
4/8 bytes

I‘

implies ownership

\
Ycap * into_vec - -
3 Note: Stringhassame """ "°° destructor atomic [4/8 bytes

memory layout as Vec<ug> Y size
&T &[T)
(ot | per | Ten | slie /8 bywe

o methedl
. methed?2 X heap allocation,

[T] AR AR S

len Y
\ . user defined type

Note: 3str has same

: . memory layout as a[u8)
Rc<T> . ., Arc<T> Mutex<T> enum {A, B, C} > deref
ptr ; | inner |poison| T orl tag | A | I
X X \, orl tag_| 8 |
[strong | weak | T | [strong [weak [T [tag | ¢ | |
Consider using parking_lot, which Also basis of Resul t, Cow, etc.
doesn't allocate the raw mutex
Option<T> Option<T>
Cell<T> RefCell<T> orl — | I l o,l L I
I T | |borr0l| T | tag | I I I
when T contains pointers

which can't be null

Rust container cheat sheet, by Raph Levien, Copyright 2017 Google Inc., released under Creative Commons BY, 2017-04-21, version 0.0.3
52

It Gets Complicated!

Cross-

Platform
Encoding

Challenges

OS & environment variables
- File Names

- Environment variables

- Command-line parameters

Different per system
- Unix: bytes; commonly UTF-8 these days
- Windows: UTF-16, but not always well-formed

54

Cross-

Platform
Encoding

Challenges

OS & environment variables
- File Names

- Environment variables

- Command-line parameters

Different per system
- Unix: bytes; commonly UTF-8 these days
- Windows: UTF-16, but not always well-formed

OsStrand OsString

- Internal data depends on OS
- §0sStristo OsStringas &stristo String

55

Cross-

Platform
Data Types

OsStrand OsString
- Internal data depends on OS
- §0sStristo OsStringas &stristo String

56

Cross-

Platform
Data Types

OsStrand OsString
- Internal data depends on OS
- §0sStristo OsStringas &stristo String

Trait std::ffi::0sStr

- pub fn to str(&self) -> Option<&str>

57

Cross-

Platform
Data Types

OsStrand OsString

- Internal data depends on OS
- §0sStristo OsStringas &stristo String

Trait std::ffi::0sStr

- pub fn to str(&self) -> Option<&str>
Trait std: :0s::unix::ffi::0sStrExt

- fn from bytes(slice: &[u8]) —-> &Self

- fn as bytes(&self) -> &[u8]

58

Cross-

Platform
Data Types

OsStrand OsString
- Internal data depends on OS
- §0sStristo OsStringas &stristo String

Trait std::ffi::0sStr

- pub fn to str(&self) -> Option<&str>
Trait std: :0s::unix::ffi::0sStrExt
- fn from bytes(slice: &[u8]) —-> &Self

- fn as bytes(&self) -> &[u8]

Trait std::0s::windows::ffi::0sStrExt

- fn encode wide (&self) -> EncodeWide

59

Working with e CStrandcCString
CAPIs - A borrowed reference to a nul-terminated array of bytes
- CStristocCsStringas &stristo String

60

Working with e CStrandcCString
CAPIs - A borrowed reference to a nul-terminated array of bytes
- CStristocCsStringas &stristo String

o Traitstd::ffi::CStr

= pub unsafe fn from ptr<'a>(ptr: *const c char) -> &'a CStr

-pub fn to str(&self) -> Result<&str, Utf8Error>

61

On Top of the Language

Unicode & Encoding/Charsets
i18n Crates - Firefox is already using a Rust component for that!

¢ RustProject
- String algorithms needed for a compiler

e Servo Project
- Basic string algorithms needed for a rendering engine

e Locale-aware API
- Actually not much available yet
- WIP by Mozilla, et al.

63

UNIC
Experiment

Unicode Unicode Unicode
Bidirectional Normalization Segmentation
Algorithm Algorithm Algorithm

unic::bidi unic::bidi unic: :segment

Unicode Unicode
IDNA Emoji

unic::idna unic::emoji

UNIC: Unicode and

i18n Crates for
Rust

Unicode Character Database
unic::ucd::[bidi, name, age, normal, ident, segment,

Character Utilities / unic: :char: : *

Core/ core Standard Library / std

Rust Compiler & Libraries

Hello p Y

Hello p Y

A Case of
Missing Bidi
Context

How about Locale
Context?

Hello M

67

Hello pMu

Summary:

Programming
Languages

Machine language

68

Summary:

Programming
Languages

Machine language
Procedural

e GOTO

69

Summary:

Programming
Languages

Machine language
Procedural
e GOTO

Functional

70

Summary:

Programming
Languages

Machine language
Procedural

e GOTO
Functional

Garbage collection

71

Summary:

Programming
Languages

Machine language
Procedural

e GOTO
Functional
Garbage collection

Strict memory management

72

Summary:

Unicode &
i1Sn

Byte == Char

73

Summary:

Unicode &
i1Sn

Byte == Char

Contextual Charset

74

Summary: e Byte==Char
Unicode &
i1Sn

e Contextual Charset

e Separation of text encoding & font encoding

75

Summary: e Byte==Char
Unicode &
i1Sn

e Contextual Charset
e Separation of text encoding & font encoding

e Unified encoding

76

Summary:

Unicode &
i1Sn

Byte == Char

Contextual Charset

Separation of text encoding & font encoding
Unified encoding

Contextual Local

77

Summary:

Unicode &
i1Sn

Byte == Char

Contextual Charset

Separation of text encoding & font encoding
Unified encoding

Contextual Local

?2??

78

HOPE

Additional e Rust Community

Resources - rust-lang.org
- doc.rust-lang.org

- play.rust-lang.org

- users.rust-lang.org

- reddit.com/r/rust/

- rustup.rs
- crates.io

- unicode-rs.qgithub.io

- newrustacean.com

e Servo, the Parallel Browser Engine Project
- servo.org

¢ UNIC: Unicode and Internationalization Crates for Rust

Q - https://github.com/open-i18n/rust-unic

80

http://rust-lang.org
http://doc.rust-lang.org
http://play.rust-lang.org
http://users.rust-lang.org
http://reddit.com/r/rust/
http://rustup.rs
http://crates.io
http://unicode-rs.github.io
http://newrustacean.com
http://servo.org
https://github.com/open-i18n/rust-unic

?NONY

Questions?

QQuora

